If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7u^2-4u-8=0
a = 7; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·7·(-8)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{15}}{2*7}=\frac{4-4\sqrt{15}}{14} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{15}}{2*7}=\frac{4+4\sqrt{15}}{14} $
| 4d^2-d-3=0 | | 3(2x=1)=93 | | 11^(2x)=14641 | | 2j^2+8j+7=0 | | 9s^2-9s+2=0 | | x/x2+14x+40=0} | | 4x+3(x+3)=2x-1 | | 9x+5=11+7x | | y/5-7=1 | | 4t=32= | | 5g^2+9g-6=0 | | 6t2-4t+32=0 | | x-(20x/100)=12 | | 5x-1=-17 | | 1/4x+2=30 | | 3/2a-13=6 | | 4/7+x=1 | | -48x-66=35+60x | | Y+4(2y+1)=8+2y-1 | | 11/12*x=1 | | 0.13x+0.2(x-4)=0.01(4x-1) | | 11d-10d-1=12 | | 46.50x=1/4 | | 7x+16=2x=4x-30 | | 3z+1/2=z+3/2 | | 7x+16=2x=4x-3 | | 52(3x4)=12 | | 5(x+1/10)=3x+1/2 | | 4(x-6)+7x=0 | | 4/35=-1+3/5x | | x+0.05x=300000 | | 6y-10=y=25 |